Risk‐adjustable stochastic schedule based on Sobol augmented Latin hypercube sampling considering correlation of wind power uncertainties
نویسندگان
چکیده
The risks associated with wind power forecast (WF) deviations are of paramount importance to many system participants (PSPs). However, traditional sampling approaches computationally prohibitive model these deviations. Additionally, setting a risk level for satisfying different PSPs receives little attention. This paper constructs risk-adjustable stochastic day-ahead scheduling (RSDS) balance the requirements PSPs, and proposes Sobol-augmented Latin Hypercube Sampling (SaLHS) approach improve efficiency scenario generation process in RSDS. At first, SaLHS D-vine copula combined generate WF error scenarios RSDS considering correlations farms. Specifically, improves uniformity removes correlation random samples. Then, Glue-VaR-based adequacy index (GVGAI) is proposed measure operational risk. By adjusting parameters GVGAI, desirable can be obtained PSPs. Furthermore, multi-objective constructed cost GVGAI. last, an entropy-Weighted Aggregated Sum Product Assessment method find best compromise solution based on Pareto front by ε-constraint method. A modified IEEE-RTS used validate effectiveness via numerical simulations.
منابع مشابه
Wind Power Forecasting Based on Extended Latin Hypercube Sampling
With the rise of distributed generation, such as wind power and photovoltaic (PV), it is necessary to consider the effect of distributed generation’s output randomness. Using the method of Latin hypercube sampling (LHS) can effectively fit output scenario. Considering the sampling number of conventional LHS (CLHS) must be fixed in advance, LHS(ELHS) can be Extended to predict wind power. The sa...
متن کاملStochastic Congestion Management Considering Power System Uncertainties
Congestion management in electricity markets is traditionally done using deterministic values of power system parameters considering a fixed network configuration. In this paper, a stochastic programming framework is proposed for congestion management considering the power system uncertainties. The uncertainty sources that are modeled in the proposed stochastic framework consist of contingencie...
متن کاملReliability Evaluation of Composite Electric Power System Based On Latin Hypercube Sampling
This paper investigates the suitability of Latin Hypercube sampling (LHS) for composite electric power system reliability analysis. Each sample generated in LHS is mapped into an equivalent system state and used for evaluating the annualized system and load point indices. DC loadflow based state evaluation model is solved for each sampled contingency state. The indices evaluated are loss of loa...
متن کاملapplication of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولApplication of Stochastic Programming to Determine Operating Reserves with Considering Wind and Load Uncertainties
Wind power generation is variable and uncertain. In the power systems with high penetration of wind power, determination of equivalent operating reserve is the main concern of systems operator. In this paper, a model is proposed to determine operating reserves in simultaneous market clearing of energy and reserve by stochastic programming based on scenarios generated via Monte Carlo simulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Renewable Power Generation
سال: 2021
ISSN: ['1752-1424', '1752-1416']
DOI: https://doi.org/10.1049/rpg2.12169